-
Notifications
You must be signed in to change notification settings - Fork 1.1k
New issue
Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? # to your account
[transformer] Make MoE runnable #2474
Conversation
离线测试 test_grad_ckpt.py 会卡住,所以先删除了 |
卡住的原因是这个: https://github.com/wenet-e2e/wenet/pull/2473/files 😭 |
ok,你搞下 |
|
ec1f652
to
4871bae
Compare
decoder_conf:
attention_heads: 4
dropout_rate: 0.1
linear_units: 512
mlp_type: moe
n_expert: 4
n_expert_activated: 2
num_blocks: 6
positional_dropout_rate: 0.1
self_attention_dropout_rate: 0.0
src_attention_dropout_rate: 0.0
dtype: fp32
encoder: conformer
encoder_conf:
activation_type: swish
attention_dropout_rate: 0.0
attention_heads: 4
cnn_module_kernel: 15
dropout_rate: 0.1
input_layer: conv2d
linear_units: 512
mlp_type: moe
n_expert: 4
n_expert_activated: 2
normalize_before: true
num_blocks: 12
output_size: 256
pos_enc_layer_type: rel_pos
positional_dropout_rate: 0.1
selfattention_layer_type: rel_selfattn
use_cnn_module: true |
hi,请问有与MoE相关的消融数据吗? |
|
hi @xingchensong,使用libtorch的runtime跑MoE的jit script(非流式),RTF反而比没有MoE的模型还高,是测试方法不对吗? 配置n_expert: 4 |
至少跑几千条后求均值rtf,跑单条,误差很大 |
音频总数:35562条 效果还是很明显,MoE的CER还略有提升,但是训练时间增加一倍。 |
add casual model fix typo rm ckpt add topk topp sampler fix positoin [train_engine] support fsdp (wenet-e2e#2412) * [train_engine] support fsdp * [train_engine] support fsdp * unify scaler and amp * fp32&&fp16 works in fsdp env * fix fsdp in cv auto cast * try to fix wenet.join fsdp * implementing zero1 under fsdp is almost equivalent to deepspeed's zero1 * fix clip_and_grad_ * fix train summary * all wenet xxxformer works (-paraformer -transducer) * try to fix nan * add barrier for cv * add destroy group for end of all train * refactor wrap methods and ckpt works * fix ckpt * fix cv in dtype != float32 * fix ckpt in model mode * fix bf16 amp * refactor scaler and autocast, fix fp32 fp16 bf16 for fsdp * fix fp32 nullcontext to nullcontext() * modify after review * fix lint * fix lint LoRA support (wenet-e2e#2049) * support lora for v3.0.1 * format code and update lora attention && encoder * fix bug when lora_list is None --------- Co-authored-by: Xingchen Song(宋星辰) <xingchensong1996@163.com> [env] update python version and deepspeed version (wenet-e2e#2462) * [env] update python version and deepspeed version * [env] fix lint fix rope pos embdining (wenet-e2e#2463) * fix rope pos embdining * fix dropout * fix comment [transformer] add multi warmup and learning rate for different modules (wenet-e2e#2449) * [transformer] add multi warmup and learning rate for different modules * fix typo * it works in warmuplr * fix lr in tensorboard in step mode * fix cv log * cv works * refactor cv log * add helper lrs_to_string * fix lrstr * fix ddp multiple lr * fix initial step * revert to -1 * fix sub params dup * fix step * fix step * fix log * add assert for scheduler * add comment for log --------- Co-authored-by: Xingchen Song(宋星辰) <xingchensong1996@163.com> add generate add toto support sft & pretrain training forward gemm conversion works support init casual model [whisper] limit language to Chinese (wenet-e2e#2470) [train] convert tensor to scalar (wenet-e2e#2471) [workflow] upgrad python version to 3.10 (wenet-e2e#2472) * [workflow] upgrad python version to 3.10 * [workflow] try to pass refactor cache behaviour in training mode (reduce compute cost and memory) (wenet-e2e#2473) all gemma model works fix ut fix ut (wenet-e2e#2477) * fix ut * fix py version [transformer] Make MoE runnable (wenet-e2e#2474) [transformer] fix mqa (wenet-e2e#2478) enable mmap in torch.load (wenet-e2e#2479) [example] Add deespeed configs of different stages for illustration (wenet-e2e#2485) [example] Fix prefetch and step_save (wenet-e2e#2486) [ctl] simplified ctl (wenet-e2e#2483) * [ctl] simplified ctl * [ctl] unify [branchformer] simplified branchformer (wenet-e2e#2482) * [transformer] simplified branchformer * fix yaml * support mqa gradiengt ckpt sdpa * fix gradient checkponit * add deepspeed comment in layer dropout * fix comment [e_branchformer] simplified e_branchformer (wenet-e2e#2484) * [e_branchformer] simplified ctl * try to fix ut * try to fix ut * fix activation * fix att args * e-branformer works [transformer] refactor cache (wenet-e2e#2481) * [transformer] refactor cache * fix ut * unify cache type in branchformer and ebranchformer fix cache fix gradient ckpt in branchformer/ebranformer (wenet-e2e#2488) fix search after refactor cache (wenet-e2e#2490) generate works! unify chat pattern convert llama3 works [transformer] set use_reentrant=False for gradient ckpt (wenet-e2e#2491) [transformer] fix warning: ignore(True) has been deprecated (wenet-e2e#2492) * [transformer] fix warning: ignore(True) has been deprecated * [transformer] fix warning: ignore(True) has been deprecated [log] avoid reduntant logging (wenet-e2e#2493) fix w1 w2 w3 in feedforward add 70b temporarily mv LLM to wenet support llm dataset unify config add dataset yaml in script support llm dataset dynamic static bucket works [transformer] refacgtor mqa repeat (wenet-e2e#2497) [transformer] fix mqa in cross att (wenet-e2e#2498) [deepspeed] update json config (wenet-e2e#2499) training works pretrain works refactor covert fix flash att in generate llama works fix llama3 fix speed try fix ut support stop tokens in gen and support ppl support stop tokens in gen and support ppl
How to use :