A comprehensive toolkit package designed to help you accurately predict key metrics such as Click-Through Rates (CTR), Conversion Rates (CVR), uplift, and # strategies. Built with state-of-the-art algorithms and user-friendly interfaces, our package streamlines the process of forecasting and decision-making, allowing you to make data-driven choices with confidence. Whether you're looking to optimize your marketing campaigns, boost sales conversions, or fine-tune your # model, our package provides the insights you need to succeed in today's competitive market.
You can learn to use the package by referring to the examples in the directory ./example
More solution examples will be released soon~
The following eval matrix has been implemented:
# | Eval Matrix | Explanation | Note |
---|---|---|---|
1 | AUC | Area Under the ROC Curve | For Classification |
2 | Confusion_Matrix | Confusion Matrix is a performance measurement for classification | For Classification |
3 | ACC_F1_score | Accuracy, Macro-F1 and Weighted-F1 | For Classification |
4 | Top_K_Acc | top_k_accuracy_score | For Classification |
5 | Multi_Class_RP | Multi Class precision, recall and F-beta | For Classification |
6 | r2_score | R2_score | For Classification |
7 | MAE | Mean Absolute Error | For Regression |
8 | MSE | Mean Square Error | For Regression |
9 | MAPE | Mean Absolute Percentage Error | For Regression |
10 | tsne | t-distributed stochastic neighbor embedding | For Manifold |
11 | sp_emb | spectral decomposition to the corresponding graph laplacian | For Manifold |
The models currently implemented in recommendation algorithms:
# | Model Name | model | Note |
---|---|---|---|
1 | Wide and Deep | WndModel | Traditional recommendations |
2 | DNN | DNNModel | Traditional recommendations |
3 | DeepFM | DeepFMModel | Traditional recommendations |
4 | Deep and Cross | DCNModel | Traditional recommendations |
5 | NFM | NFMModel | Traditional recommendations |
6 | Tower | TowerModel | Traditional recommendations |
7 | FLEN | FLENModel | Traditional recommendations |
8 | Fibinet | FiBiNetModel | Traditional recommendations |
9 | InterHAt | InterHAtModel | Traditional recommendations |
10 | CAN | CANModel | Traditional recommendations |
11 | MaskNet | MaskNetModel | Traditional recommendations |
12 | ContextNet | ContextNetModel | Traditional recommendations |
13 | EDCN | EDCNModel | Traditional recommendations |
14 | BertSeq | Bert4RecModel | Sequence recommendation |
15 | GRU4Rec | GRU4RecModel | Sequence recommendation |
16 | DIN | DINModel | Sequence recommendation |
17 | DCAP | DCAPModel | Sequence recommendation |
18 | FBAS | FBASModel | Sequence recommendation |
19 | ESMM | ESMMModel | Multi objective recommendation |
20 | MMoE | GeneralMMoEModel | Multi objective recommendation |
21 | Hard Sharing | HardSharingModel | Multi objective recommendation |
22 | Cross Sharing | CrossSharingModel | Multi objective recommendation |
23 | Cross Stitch | CrossStitchModel | Multi objective recommendation |
24 | PLE | PLEModel | Multi objective recommendation |
In the consolidated algorithms, the following Layer networks have been implemented, which can be conveniently called by higher-level models, or users can directly call the Layer layers to assemble their own models.
# | Graph-based Layer | Note |
---|---|---|
1 | HOMOGNNLayer | General GNN layers for Homogeneity Graph (GCNConv, GATConv, SAGEConv, TransformerConv, ARMAConv) |
2 | HETEGNNLayer | General GNN layers for heterogeneous Graph (HGTConv,HANConv) |
# | Layer | Note |
---|---|---|
1 | DNNLayer | DNN Net |
2 | FMLayer | FM Net in DeepFM, NFM |
3 | CrossLayer | Cross Net in Deep and Cross |
4 | CINLayer | CIN Net in XDeepFM |
5 | MultiHeadAttentionLayer | multi head attention in Bert |
6 | SelfAttentionLayer | scaled dot self attention in Bert |
7 | LayerNorm | Layer Normalization in Bert |
8 | PositionWiseFeedForwardLayer | Position wise feed forward in Bert |
9 | TransformerLayer | Transformer(including multi head attention and LayerNorm) in Bert |
10 | TransformerEncoder | Multi-Transformer in Bert |
11 | AutoIntLayer | Similar with TransformerLayer |
12 | FuseLayer | Local Activation Unit in DIN |
13 | SENETLayer | Squeeze and Excitation Layer |
14 | FieldWiseBiInteractionLayer | FM and MF layer in FLEN |
15 | CrossStitchLayer | Cross-stitch Networks for Multi-task Learning |
16 | GeneralMMoELayer | Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts |
17 | Dice | Dice activation function |
18 | PositionEncodingLayer | Positional Encoding Layer in Transformer |
19 | CGCGatingNetworkLayer | task and expert Net in PLE |
20 | BiLinearInteractionLayer | Last feature net in Fibinet |
21 | CoActionLayer | co-action unit layer in CAN |
22 | MaskBlockLayer | MaskBlockLayer in MaskNet |
If you find this code useful in your research, please cite it using the following BibTeX:
@software{
Wang_gbiz_torch_A_comprehensive_2023,
author = {Wang, Haowen},
doi = {10.5281/zenodo.10222799},
month = nov,
title = {{gbiz_torch: A comprehensive toolkit for predicting key metrics in e-commercial fields}},
url = {https://github.com/whw199833/gbiz_torch},
version = {2.0.4},
year = {2023}
}
or following APA:
Wang, H. (2023). gbiz_torch: A comprehensive toolkit for predicting key metrics in e-commercial fields (Version 2.0.4) [Computer software]. https://doi.org/10.5281/zenodo.10222799
If you have some questions or some advice, or want to contribute to this repo, do not hesitate to contact me:
mail: wanghw@zju.edu.cn
wechat: whw199833