Skip to content

Commit

Permalink
Support Deepseek-V2 (vllm-project#4650)
Browse files Browse the repository at this point in the history
Co-authored-by: Philipp Moritz <pcmoritz@gmail.com>
  • Loading branch information
2 people authored and jimpang committed Jul 8, 2024
1 parent cdd5875 commit 5dd5533
Show file tree
Hide file tree
Showing 6 changed files with 700 additions and 1 deletion.
6 changes: 6 additions & 0 deletions vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -297,6 +297,12 @@ def get_hidden_size(self) -> int:
return self.hf_text_config.hidden_size

def get_head_size(self) -> int:
# TODO remove hard code
if hasattr(self.hf_text_config, "model_type"
) and self.hf_text_config.model_type == 'deepseek_v2':
# FlashAttention supports only head_size 32, 64, 128, 256,
# we need to pad head_size 192 to 256
return 256
if hasattr(self.hf_text_config, "head_dim"):
return self.hf_text_config.head_dim
# FIXME(woosuk): This may not be true for all models.
Expand Down
3 changes: 2 additions & 1 deletion vllm/model_executor/layers/fused_moe/__init__.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
from vllm.model_executor.layers.fused_moe.fused_moe import (
fused_experts, fused_moe, fused_topk, get_config_file_name)
fused_experts, fused_moe, fused_topk, get_config_file_name, grouped_topk)

__all__ = [
"fused_moe",
"fused_topk",
"fused_experts",
"get_config_file_name",
"grouped_topk",
]
31 changes: 31 additions & 0 deletions vllm/model_executor/layers/fused_moe/fused_moe.py
Original file line number Diff line number Diff line change
Expand Up @@ -367,6 +367,37 @@ def fused_topk(
return topk_weights, topk_ids


# This is used by the Deepseek-V2 model
def grouped_topk(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
num_expert_group: int = 0,
topk_group: int = 0,
):
scores = torch.softmax(gating_output, dim=-1)
num_token = scores.shape[0]
group_scores = scores.view(num_token, num_expert_group,
-1).max(dim=-1).values # [n, n_group]
group_idx = torch.topk(group_scores, k=topk_group, dim=-1,
sorted=False)[1] # [n, top_k_group]
group_mask = torch.zeros_like(group_scores) # [n, n_group]
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
score_mask = group_mask.unsqueeze(-1).expand(
num_token, num_expert_group,
scores.shape[-1] // num_expert_group).reshape(num_token, -1) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
topk_weights, topk_ids = torch.topk(tmp_scores,
k=topk,
dim=-1,
sorted=False)

if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids


def fused_experts(hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
Expand Down
126 changes: 126 additions & 0 deletions vllm/model_executor/layers/rotary_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -610,6 +610,119 @@ def forward(
return query.flatten(-2), key.flatten(-2)


def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
if scale <= 1:
return 1.0
return 0.1 * mscale * math.log(scale) + 1.0


class DeepseekScalingRotaryEmbedding(RotaryEmbedding):
"""RotaryEmbedding extended with YaRN method.
Credits to Peng et al. github.com/jquesnelle/yarn
"""

def __init__(
self,
head_size: int,
rotary_dim: int,
max_position_embeddings: int,
base: int,
is_neox_style: bool,
scaling_factor: float,
dtype: torch.dtype,
*,
extrapolation_factor: float = 1,
attn_factor: float = 1,
beta_fast: int = 32,
beta_slow: int = 1,
mscale: float = 1,
mscale_all_dim: float = 0,
) -> None:
self.scaling_factor = scaling_factor
self.extrapolation_factor = extrapolation_factor
self.attn_factor = attn_factor
self.beta_fast = beta_fast
self.beta_slow = beta_slow
# Get n-d magnitude scaling corrected for interpolation.
self.mscale = float(
yarn_get_mscale(self.scaling_factor, float(mscale)) /
yarn_get_mscale(self.scaling_factor, float(mscale_all_dim)) *
attn_factor)
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
is_neox_style, dtype)

def _compute_inv_freq(self, scaling_factor: float) -> torch.Tensor:
pos_freqs = self.base**(torch.arange(
0, self.rotary_dim, 2, dtype=torch.float, device="cuda") /
self.rotary_dim)
inv_freq_extrapolation = 1.0 / pos_freqs
inv_freq_interpolation = 1.0 / (scaling_factor * pos_freqs)

low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow,
self.rotary_dim, self.base,
self.max_position_embeddings)
# Get n-d rotational scaling corrected for extrapolation
inv_freq_mask = (1 - _yarn_linear_ramp_mask(
low, high, self.rotary_dim // 2,
dtype=torch.float)) * self.extrapolation_factor
inv_freq = inv_freq_interpolation * (
1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
return inv_freq

def _compute_cos_sin_cache(self) -> torch.Tensor:
inv_freq = self._compute_inv_freq(self.scaling_factor)
t = torch.arange(self.max_position_embeddings * self.scaling_factor,
device="cuda",
dtype=torch.float32)
freqs = torch.einsum("i,j -> ij", t, inv_freq)
cos = (freqs.cos() * self.mscale)
sin = (freqs.sin() * self.mscale)
cache = torch.cat((cos, sin), dim=-1)
print("Cache shape", cache.shape)
return cache

def forward(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
offsets: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""PyTorch-native implementation equivalent to forward()."""
query_rot = query[..., :self.rotary_dim]
key_rot = key[..., :self.rotary_dim]
if self.rotary_dim < self.head_size:
query_pass = query[..., self.rotary_dim:]
key_pass = key[..., self.rotary_dim:]

self.cos_sin_cache: torch.Tensor = self.cos_sin_cache.to(
positions.device)
cos_sin = self.cos_sin_cache[torch.add(positions, offsets)
if offsets is not None else positions]
cos, sin = cos_sin.chunk(2, dim=-1)
if self.is_neox_style:
# NOTE(woosuk): Here we assume that the positions tensor has the
# shape [batch_size, seq_len].
cos = cos.repeat(1, 1, 2).unsqueeze(-2)
sin = sin.repeat(1, 1, 2).unsqueeze(-2)
else:
cos = cos.repeat_interleave(2, dim=-1).unsqueeze(-2)
sin = sin.repeat_interleave(2, dim=-1).unsqueeze(-2)

rotate_fn = _rotate_neox if self.is_neox_style else _rotate_gptj
query_rot = query_rot * cos + rotate_fn(query_rot) * sin
key_rot = key_rot * cos + rotate_fn(key_rot) * sin

if self.rotary_dim < self.head_size:
query = torch.cat((query_rot, query_pass), dim=-1)
key = torch.cat((key_rot, key_pass), dim=-1)
else:
query = query_rot
key = key_rot
return query, key


class GemmaRotaryEmbedding(RotaryEmbedding):

def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
Expand Down Expand Up @@ -679,6 +792,19 @@ def get_rope(
base, is_neox_style,
scaling_factor, dtype,
**extra_kwargs)
elif scaling_type == "deepseek_yarn":
original_max_position = rope_scaling[
"original_max_position_embeddings"]
# assert max_position == original_max_position * scaling_factor
extra_kwargs = {
k: v
for k, v in rope_scaling.items()
if k in ("extrapolation_factor", "attn_factor", "beta_fast",
"beta_slow", "mscale", "mscale_all_dim")
}
rotary_emb = DeepseekScalingRotaryEmbedding(
head_size, rotary_dim, original_max_position, base,
is_neox_style, scaling_factor, dtype, **extra_kwargs)
# The correct one should be "longrope" but keep "su" here
# for backward compatible
elif scaling_type == "su" or scaling_type == "longrope":
Expand Down
1 change: 1 addition & 0 deletions vllm/model_executor/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
"DbrxForCausalLM": ("dbrx", "DbrxForCausalLM"),
"DeciLMForCausalLM": ("decilm", "DeciLMForCausalLM"),
"DeepseekForCausalLM": ("deepseek", "DeepseekForCausalLM"),
"DeepseekV2ForCausalLM": ("deepseek_v2", "DeepseekV2ForCausalLM"),
"FalconForCausalLM": ("falcon", "FalconForCausalLM"),
"GemmaForCausalLM": ("gemma", "GemmaForCausalLM"),
"Gemma2ForCausalLM": ("gemma2", "Gemma2ForCausalLM"),
Expand Down
Loading

0 comments on commit 5dd5533

Please # to comment.