Skip to content

PyTorch implements multi-agent reinforcement learning algorithms, including QMIX, Independent PPO, Centralized PPO, Grid Wise Control, Grid Wise Control+PPO, Grid Wise Control+DDPG.

License

Notifications You must be signed in to change notification settings

yangchen1997/Multi-Agent-Reinforcement-Learning

Repository files navigation

Abstract

The implementation of multi-agent reinforcement learning algorithm in Pytorch, including: Grid-Wise Control, Qmix, Centralized PPO. Different learning strategies can be specified during training, and model and experimental data can be saved.

Quick Start: Run the main.py script to start training. Please specify all parameters in the config.yaml file (The parameters used in this project are not optimal parameters, please adjust them according to the actual requirement).

Petting Zoo

MPE: Multi Particle Environments (MPE) are a set of communication oriented environment where particle agents can (sometimes) move, communicate, see each other, push each other around, and interact with fixed landmarks.

These environments are from OpenAI’s MPE codebase, with several minor fixes, mostly related to making the action space discrete by default, making the rewards consistent and cleaning up the observation space of certain environments.

The environment applied in this project is Simple Spread (I'm also considering adding other environments in future releases).

Env image

Requirement

Note: The following are suggested versions only, and do not mean the program will not work with other versions.

Name Version
Python 3.10.9
gymnasium 0.28.1
numpy 1.23.5
PettingZoo 1.23.0
Pytorch 1.12.1

Update on 4.10.2023: Pytorch 2.0.0+cu118 on python 3.9.16 works. Please notice that python >3.9 won't work because PettingZoo 1.12.0 is not available.

Corresponding Papers

Reference

  • petting zoo:
@article{terry2020pettingzoo,
  Title = {PettingZoo: Gym for Multi-Agent Reinforcement Learning},
  Author = {Terry, J. K and Black, Benjamin and Grammel, Nathaniel and Jayakumar, Mario and Hari, Ananth and Sulivan, Ryan and Santos, Luis and Perez, Rodrigo and Horsch, Caroline and Dieffendahl, Clemens and Williams, Niall L and Lokesh, Yashas and Sullivan, Ryan and Ravi, Praveen},
  journal={arXiv preprint arXiv:2009.14471},
  year={2020}
}

About

PyTorch implements multi-agent reinforcement learning algorithms, including QMIX, Independent PPO, Centralized PPO, Grid Wise Control, Grid Wise Control+PPO, Grid Wise Control+DDPG.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages