Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
yfguo91 authored Jul 12, 2022
1 parent 1e8f88e commit 2884175
Showing 1 changed file with 278 additions and 0 deletions.
278 changes: 278 additions & 0 deletions sew_resnet.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,278 @@
import torch
import torch.nn as nn
from spikingjelly.clock_driven import layer
from spikingjelly.cext import neuron as cext_neuron
__all__ = ['SEWResNet', 'sew_resnet18', 'sew_resnet34', 'sew_resnet50', 'sew_resnet101',
'sew_resnet152']

def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)


def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

class LearnableSpike(nn.Module):
def __init__(self, out_chn):
super(LearnableSpike, self).__init__()
self.bias = nn.Parameter(torch.ones(1,1,out_chn,1,1), requires_grad=True)
#self.bias = nn.Parameter(torch.zeros(1,1,1,1,1), requires_grad=True)

def forward(self, x):
out = x * self.bias.expand_as(x)
return out

class BasicBlock(nn.Module):
expansion = 1

def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None, connect_f=None):
super(BasicBlock, self).__init__()
self.connect_f = connect_f
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('SpikingBasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in SpikingBasicBlock")

self.conv1 = layer.SeqToANNContainer(
conv3x3(inplanes, planes, stride),
norm_layer(planes)
)
self.sn1 = cext_neuron.MultiStepIFNode(detach_reset=True)

self.spike1 = LearnableSpike(planes)

self.conv2 = layer.SeqToANNContainer(
conv3x3(planes, planes),
norm_layer(planes)
)
self.downsample = downsample
self.stride = stride
self.sn2 = cext_neuron.MultiStepIFNode(detach_reset=True)

self.spike2 = LearnableSpike(planes)

def forward(self, x):
identity = x

out = self.sn1(self.conv1(x))
out = self.spike1(out)

out = self.sn2(self.conv2(out))
out = self.spike2(out)

if self.downsample is not None:
identity = self.downsample(x)

if self.connect_f == 'ADD':
out += identity
elif self.connect_f == 'AND':
out *= identity
elif self.connect_f == 'IAND':
out = identity * (1. - out)
else:
raise NotImplementedError(self.connect_f)

return out


class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None, connect_f=None):
super(Bottleneck, self).__init__()
self.connect_f = connect_f
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
self.conv1 = layer.SeqToANNContainer(
conv1x1(inplanes, width),
norm_layer(width)
)
self.sn1 = cext_neuron.MultiStepIFNode(detach_reset=True)
self.spike1 = LearnableSpike(width)

self.conv2 = layer.SeqToANNContainer(
conv3x3(width, width, stride, groups, dilation),
norm_layer(width)
)
self.sn2 = cext_neuron.MultiStepIFNode(detach_reset=True)
self.spike2 = LearnableSpike(width)

self.conv3 = layer.SeqToANNContainer(
conv1x1(width, planes * self.expansion),
norm_layer(planes * self.expansion)
)
self.downsample = downsample
self.stride = stride
self.sn3 = cext_neuron.MultiStepIFNode(detach_reset=True)
self.spike3 = LearnableSpike(planes * self.expansion)

def forward(self, x):
identity = x

out = self.sn1(self.conv1(x))
out = self.spike1(out)

out = self.sn2(self.conv2(out))
out = self.spike2(out)

out = self.sn3(self.conv3(out))
out = self.spike3(out)

if self.downsample is not None:
identity = self.downsample(x)


if self.connect_f == 'ADD':
out += identity
elif self.connect_f == 'AND':
out *= identity
elif self.connect_f == 'IAND':
out = identity * (1. - out)
else:
raise NotImplementedError(self.connect_f)

return out
def zero_init_blocks(net: nn.Module, connect_f: str):
for m in net.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.conv3.module[1].weight, 0)
if connect_f == 'AND':
nn.init.constant_(m.conv3.module[1].bias, 1)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.conv2.module[1].weight, 0)
if connect_f == 'AND':
nn.init.constant_(m.conv2.module[1].bias, 1)


class SEWResNet(nn.Module):

def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, T=4, connect_f=None):
super(SEWResNet, self).__init__()
self.T = T
self.connect_f = connect_f
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer

self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)


self.sn1 = cext_neuron.MultiStepIFNode(detach_reset=True)
self.spike1 = LearnableSpike(self.inplanes)

self.maxpool = layer.SeqToANNContainer(nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

self.layer1 = self._make_layer(block, 64, layers[0], connect_f=connect_f)
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0], connect_f=connect_f)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1], connect_f=connect_f)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2], connect_f=connect_f)
self.avgpool = layer.SeqToANNContainer(nn.AdaptiveAvgPool2d((1, 1)))
self.fc = nn.Linear(512 * block.expansion, num_classes)

for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)

if zero_init_residual:
zero_init_blocks(self, connect_f)

def _make_layer(self, block, planes, blocks, stride=1, dilate=False, connect_f=None):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
layer.SeqToANNContainer(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
),
cext_neuron.MultiStepIFNode(detach_reset=True)
)

layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer, connect_f))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer, connect_f=connect_f))

return nn.Sequential(*layers)

def _forward_impl(self, x):
x = self.conv1(x)
x = self.bn1(x)
x.unsqueeze_(0)
x = x.repeat(self.T, 1, 1, 1, 1)
x = self.sn1(x)
x = self.spike1(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)

x = self.avgpool(x)
x = torch.flatten(x, 2)
return self.fc(x.mean(dim=0))

def forward(self, x):
return self._forward_impl(x)


def _sew_resnet(block, layers, **kwargs):
model = SEWResNet(block, layers, **kwargs)
return model


def sew_resnet18(**kwargs):
return _sew_resnet(BasicBlock, [2, 2, 2, 2], **kwargs)


def sew_resnet34(**kwargs):
return _sew_resnet(BasicBlock, [3, 4, 6, 3], **kwargs)


def sew_resnet50(**kwargs):
return _sew_resnet(Bottleneck, [3, 4, 6, 3], **kwargs)


def sew_resnet101(**kwargs):
return _sew_resnet(Bottleneck, [3, 4, 23, 3], **kwargs)


def sew_resnet152(**kwargs):
return _sew_resnet(Bottleneck, [3, 8, 36, 3], **kwargs)



0 comments on commit 2884175

Please # to comment.