-
Notifications
You must be signed in to change notification settings - Fork 1
yifeng-li/xdgm
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This package includes Yifeng Li's implementations of exponential family deep generative models. New developments will be gradually added. 1. Implementations in Python 3.6: restricted_boltzmann_machine.py: Class of exponential family restricted Boltzmann machine (exp-RBM). helmholtz_machine.py: Class of exponential family Helmholtz machine (exp-HM). deep_belief_net.py: Class of exponential family deep belief net (exp-DBN). deep_boltzmann_machine.py: Class of exponential family deep Boltzman machine (exp-DBM). multimodaldbm.py: Class of multi-modal deep Boltzmann machine (MDBM). multimodaldbm.py: Class of multi-modal deep belief net (MDBN). 2. Examples: main_test_ExpRBM_MNIST.py: Exp-RBM on MNIST. main_test_ExpRBM_FASHIONMNIST.py: Exp-RBM on Fashion-MNIST. main_test_ExpHM_MNIST.py: Exp-HM on MNIST. main_test_ExpHM_FASHIONMNIST.py: Exp-HM on Fashion-MNIST. main_test_ExpDBN_MNIST.py: Exp-DBN on MNIST. main_test_ExpDBN_FASHIONMNIST.py: Exp-DBN on Fashion-MNIST. main_test_ExpDBM_MNIST.py: Exp-DBM on MNIST. main_test_ExpDBM_MNIST.py: Exp-DBM on MNIST. main_test_ExpDBM_FASHIONMNIST.py: Exp-DBM on Fashion-MNIST. main_test_ExpMDBN_MNIST.py: MDBN on MNIST. main_test_ExpMDBN_FASHIONMNIST.py: MDBN on Fashion-MNIST. main_test_ExpMDBM_MNIST.py: MDBM on MNIST. 3. Data: MNIST: given in ./data/MNIST. Fashion-MNIST: if missing, download the csv files from https://www.kaggle.com/zalando-research/fashionmnist, then added them to ./data/FASHIONMNIST. 4. Citations: [1] Yifeng Li and Xiaodan Zhu, "Exploring Helmholtz machine and deep belief net in the exponential family perspective," ICML 2018 Workshop on Theoretical Foundations and Applications of Deep Generative Models, Stockholm, Sweden, July 2018. [2] Yifeng Li and Xiaodan Zhu, "Exponential family restricted Boltzmann machines and annealed importance sampling," 2018 International Joint Conference on Neural Networks (IJCNN/WCCI), Rio, Brazil, July 2018, pp. 39-48. 5. Contact: Yifeng Li Scientific Data Mining Team Digital Technologies Research Centre National Research Council Canada Email: yifeng.li.cn@gmail.com; yifeng.li@nrc-cnrc.gc.ca Web1: https://sites.google.com/view/yifengli Web2: https://www.nrc-cnrc.gc.ca/eng/expertise/profile.html?id=33073 Other Packages: Capsule Generative Models: https://github.com/yifeng-li/cdgm Deep Learning: https://github.com/yifeng-li/DECRES MVMF: https://github.com/yifeng-li/mvmf NMF Toolbox: https://sites.google.com/site/nmftool SR Toolbox: https://sites.google.com/site/sparsereptool RLMK Toolbox: https://sites.google.com/site/rlmktool PGM Toolbox: https://sites.google.com/site/pgmtool Spectral Clustering Toolbox: https://sites.google.com/site/speclust
About
Exponential Family Deep Generative Models.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published