By Yu-Xiao Guo, Xin Tong
OS: Ubuntu-16.04,
Python: 3.5,
TensorFlow: 1.3.0-RC2,
CUDA: 8.0,
CUDNN: 6.0,
GPUs: NVidia GTX TITAN XP * 2
- Install TensorFlow:
pip install tensorflow-gpu==1.3.0-rc2
- Compile custom ops:
cd libs && source build.sh
- Prepare training/test samples:
- Download SSCNet-SUNCG training/test samples: url. (If someone finds the link is invalid, please ask the permission from the author of SSCNet directly)
- Run:
cd tools && python prepare_data.py
. Please setDATA_DIR
andRECORD_DIR
to your local path in advance.
- Train:
source run_training.sh
- Test:
source run_test.sh
--input-previous-model-path
: model dir/file for fine-tune.--input-training-data-path
: the dir to folder of training TFRecords--input-validation-data-path
: the dir to folder of test TFRecords--input-gpu-nums
: gpu nums for training--input-network
: network structure to train/test, optional choices includingVVNetAE30
,VVNetAE60
,VVNetAE120
. If someone tends to try other models in folder models but fails, please feel free to ping us.--max-iters
: maximum iterations for training, default 150K--record-iters
: saving model period per iterations, default 2K--batch-per-device
: batch size per gpu, default 2--output-model-path
: the dir to save trained models--log-dir
: the dir to save logs--eval-platform
: the test output format.fusion
will save test tensors with compatible mode with SSCNet evaluation pipeline.--eval-results
: the folder to save test output--phase
: the phase oftraining
ortest
- tools/prepare_data.py: generating the train/test samples from SSCNet-SUNCG
- refresh_mask.py: generating the mask used by loss function to select proper voxel behind the surface
- tools/mask2cube.py: visualize the mask file saved by refresh_mask.py
Please cite our work if you find helpful in your research:
@InProceedings{guo2018view,
author={Guo, Yu-Xiao and Tong, Xin},
title={View-volume network for semantic scene completion from a single depth image},
booktitle = {IJCAI},
year={2018}
}