Skip to content

Implementation of View-volume network for semantic scene completion from a single depth image

License

Notifications You must be signed in to change notification settings

yuxiaoguo/VVNet

Repository files navigation

VVNet: View-volume network for semantic scene completion from a single depth image

By Yu-Xiao Guo, Xin Tong

Environment & Requirement

OS: Ubuntu-16.04,
Python: 3.5,
TensorFlow: 1.3.0-RC2,
CUDA: 8.0,
CUDNN: 6.0,
GPUs: NVidia GTX TITAN XP * 2

Setup

Steps:

  1. Install TensorFlow: pip install tensorflow-gpu==1.3.0-rc2
  2. Compile custom ops: cd libs && source build.sh
  3. Prepare training/test samples:
    • Download SSCNet-SUNCG training/test samples: url. (If someone finds the link is invalid, please ask the permission from the author of SSCNet directly)
    • Run: cd tools && python prepare_data.py. Please set DATA_DIR and RECORD_DIR to your local path in advance.
  4. Train: source run_training.sh
  5. Test: source run_test.sh

Parameters description:

  • --input-previous-model-path: model dir/file for fine-tune.
  • --input-training-data-path: the dir to folder of training TFRecords
  • --input-validation-data-path: the dir to folder of test TFRecords
  • --input-gpu-nums: gpu nums for training
  • --input-network: network structure to train/test, optional choices including VVNetAE30, VVNetAE60, VVNetAE120. If someone tends to try other models in folder models but fails, please feel free to ping us.
  • --max-iters: maximum iterations for training, default 150K
  • --record-iters: saving model period per iterations, default 2K
  • --batch-per-device: batch size per gpu, default 2
  • --output-model-path: the dir to save trained models
  • --log-dir: the dir to save logs
  • --eval-platform: the test output format. fusion will save test tensors with compatible mode with SSCNet evaluation pipeline.
  • --eval-results: the folder to save test output
  • --phase: the phase of training or test

Tools

Citation

Please cite our work if you find helpful in your research:

@InProceedings{guo2018view,
  author={Guo, Yu-Xiao and Tong, Xin},
  title={View-volume network for semantic scene completion from a single depth image},
  booktitle = {IJCAI},
  year={2018}
}

About

Implementation of View-volume network for semantic scene completion from a single depth image

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages