An inofficial PyTorch implementation of Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
- Inception-v4
- Inception-ResNet-v2
All the results reported here are based on this repo, and 50000 ImageNet validation sets。
- top-1 accuracy
- top-5 accuracy
- # model parameters / FLOPs
- inference time (average)
- bottom10 accuracy
- Hyper parameters
- blacklists
-
Top-1 and top-5 accuracy with blacklisted entities
Model top-1(TF) top-1(this repo) top-5(TF) top-5(this repo) Inception-v4 0.801 0.801 0.952 0.950 Inception-ResNet-v2 0.804 0.803 0.953 0.951 -
Other hyper-parameters in Inception-v4
eps
in BatchNorm2d andcount_include_pad
in AvgPool2dConfig #top-1 top-1 #top-5 top-5 eps=0.001, count_include_pad=False 40041 0.801 47445 0.949 eps=0.001, count_include_pad=True 39970 0.799 47395 0.948 eps=1e-5, count_include_pad=False 40036 0.801 47438 0.949 -
Model parameters and FLOPs
Model Params(M) FLOPs(G) Inception-v4 42.68 6.31 Inception-ResNet-v2 55.84 6.65 -
Average inference time(RTX 2080Ti)
Model Single inference time(ms) Inception-v4 40.54 Inception-ResNet-v2 61.62 -
Top-1 and top-5 accuracy(bottom-10 classes)
-
Inception-v4
Top-1 accuracy Classes Top-5 accuracy Classes 0.16 n04152593 : screen, CRT screen 0.62 n03692522 : loupe, jeweler's loupe 0.22 n04286575 : spotlight, spot 0.64 n04286575 : spotlight, spot 0.22 n02123159 : tiger cat 0.64 n04525038 : velvet 0.22 n03642806 : laptop, laptop computer 0.68 n04081281 : restaurant, eating house, eating place, eatery 0.22 n04355933 : sunglass 0.72 n03532672 : hook, claw 0.24 n04560804 : water jug 0.72 n03658185 : letter opener, paper knife, paperknife 0.26 n04525038 : velvet 0.74 n03476684 : hair slide 0.26 n02979186 : cassette player 0.74 n02910353 : buckle 0.28 n02107908 : Appenzeller 0.76 n02776631 : bakery, bakeshop, bakehouse 0.34 n03710637 : maillot 0.76 n03347037 : fire screen, fireguard -
Inception-ResNet-v2
Top-1 accuracy Classes Top-5 accuracy Classes 0.18 n04152593 : screen, CRT screen 0.6 n04286575 : spotlight, spot 0.22 n03710637 : maillot 0.64 n04525038 : velvet 0.22 n02123159 : tiger cat 0.64 n03692522 : loupe, jeweler's loupe 0.28 n02979186 : cassette player 0.66 n03658185 : letter opener, paper knife, paperknife 0.28 n04008634 : projectile, missile 0.7 n04081281 : restaurant, eating house, eating place, eatery 0.28 n04355933 : sunglass 0.72 n03532672 : hook, claw 0.3 n03658185 : letter opener, paper knife, paperknife 0.74 n04591157 : Windsor tie 0.3 n03642806 : laptop, laptop computer 0.74 n03016953 : chiffonier, commode 0.3 n04286575 : spotlight, spot 0.74 n04239074 : sliding door 0.32 n02089973 : English foxhound 0.74 n03476684 : hair slide
-
- https://github.com/tensorflow/models/tree/master/research/slim/nets
- https://github.com/tensorflow/models/tree/master/research/inception/inception/data
- https://github.com/Cadene/pretrained-models.pytorch
- https://github.com/kentsommer/keras-inceptionV4
- https://github.com/Lyken17/pytorch-OpCounter