Skip to content

SilvioMessi/SaaS-Chatbots

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

33 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SaaS Chatbots [italian documentation]

L'obiettivo di questo progetto è quello di valutare e comparare i principali servizi SaaS per la creazione di chatbots. I servizi attualmente presi in considerazione sono:

  • API.AI - Google
  • WIT.AI - Facebook
  • LUIS.AI - Microsoft
  • MS CHATBOT - Piattaforma di NLU realizzata con la liberira Python nlu

L'analisi di tali servizi mira a valutare il loro supporto al NLU (natural language understanding), ovvero la loro capacità di analizzare frasi espresse in linguaggio naturale e di estrapolare da esse alcune informazioni importanti. In particolare ci si aspetta che da una frase vengano estratti intenti ed entità.

Sono stati trascurati altri aspetti come ad esempio la gestione del contesto.

Utilizzo

Creazione dei chatbots

Creare, per ognuno dei servizi indicati precedentemente, un nuovo chatbot. Reperire, dalla dashboard, i parametri necessari per l'utilizzo di tali chatbot tramite HTTP API ed inserirli nel file js/config.js.

Creazione del trainig set e del test set

  • editare il file data/entities.json per creare/ampliare le definizioni di entità;
  • editare il file data/intents.json per creare/ampliare le definizioni di intenti;
  • eseguire lo script js/data_sets_creation.js per generare automaticamente il training set (data/intents_training_set.json) e il test set (data/intents_test_set.json) a partire dal data set data/intents.json. È possibile definire la percentuale di data set da allocare per il trainig grazie al parametro (numero decimale compreso tra 0 e 1) che la funzione createDataSets accetta.

Fase di training

  • eseguire lo script js/trainig.js

Sono necessarie una serie di azioni manuali per completare la fase di training:

  • API.AI -> Editare, per ogni intento creato, la lista dei parametri, togliendo eventuali spunte dalla colonna IS LIST. La presenza di queste spunte comporta una serie di problemi, come riportato anche da altri utenti sul forum.

  • WIT.AI -> Creare manualmente eventuali entità prebuilt (e.g. entità per la rilevazione dei numeri), dato che la creazione di quest'ultime non può essere gestita tramite API.

  • LUIS.AI -> Addestrare (Train) e pubblicare (Publish) il chatbot. LUIS prevede, al fine di poter interrogare un chatbot, la pubblicazione di quest'ultimo previa sottoscrizione di un piano tariffario su Azure.

Fase di testing

  • eseguire lo script js/test.js

Verrano generati i seguenti files:

  • results.json risultati in formato esteso
  • results.csv risultati in formato compatto
  • metrics_NOME_SEVIZIO.csv confusion matrix

About

SaaS Chatbots Comparison

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published