Skip to content

abhika-m/FAVA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

45 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FAVA

made-with-python

Intro

FAVA is a hallucination detection and editing model. You can find a model demo here, model weights here and our datasets here. This repo includes information on synthetic data generation for training and evaluating FAVA.

FAVA

Overview

  1. Installation
  2. Synthetic Data Generation
  3. Postprocess Data for Training
  4. Retrieval Guide
  5. FActScore Evaluations
  6. Fine Grained Sentence Detection Evaluations

Install

conda create -n fava python=3.9
conda activate fava
pip install -r requirements.txt
python -m spacy download en_core_web_sm

Training

Step 1: Synthetic Data Generation

Our synthetic data generation takes in wikipedia passages and a title, diversifies the passage to another genre of text and then inserts errors one by one using ChatGPT and GPT-4.

Running Data Generation

cd training
python generate_train_data.py \
--input_file {input_file_path} \
--output_file {output_file_path} \
--openai_key {your_openai_key}

Input file is jsonl and includes:

  • intro (ex: 'Lionel Messi is an Argentine soccer player.')
  • title (ex: 'Lionel Andrés Messi')

Output file includes:

  • evidence (ex: 'Lionel Messi is an Argentine soccer player.')
  • diversified_passage (ex: 'The Argentine soccer player, Lionel Messi, is...')
  • errored_passage (ex: 'The <entity><delete>Argentine</delete><mark>American</mark></entity> soccer player, Lionel Messi, is...')
  • subject (ex: 'Lionel Andrés Messi')
  • type (ex: 'News Article')
  • error_types (ex: ['entity'])

Step 2: Process Training Data

Post Processing

cd training
python process_train_data.py \
--input_file {input_file_path} \
--output_file {output_file_path}

Input file is json and includes:

  • evidence (ex: 'Lionel Messi is an Argentine soccer player.')
  • errored_passage (ex: 'The <entity><delete>Argentine</delete><mark>American</mark></entity> soccer player, Lionel Messi, is...')
  • ctxs (ex: [{'id': 0, 'title': 'Lionel Messi', 'text': 'Lio Messi is known for...'},...])

Output file includes:

  • prompt (ex: 'Read the following references:\nReference[1]:Lio Messi is...[Text] The American soccer player, Lionel Messi, is...')
  • completion (ex: 'The <entity><mark>Argentine</mark><delete>American</delete></entity> soccer player, Lionel Messi, is...')

Step 3: Training

We followed Open-Instruct's training script for training FAVA. We updated and ran this script updating the train_file to our processed training data from step 2 and used Llama-2-Chat 7B as our base model.

You can find our training data here.

Retrieval Guide

We use Contriever to retrieve documents.

Step 1: Download data

Download the preprocessed passage data and the generated passaged (Contriever-MSMARCO).

cd retrieval
wget https://dl.fbaipublicfiles.com/dpr/wikipedia_split/psgs_w100.tsv.gz
wget https://dl.fbaipublicfiles.com/contriever/embeddings/contriever-msmarco/wikipedia_embeddings.tar

Step 2: Collect Retrieved Passages

We retrieve the top 5 documents but you may adjust num_docs as per your liking.

cd retrieval
python passage_retrieval.py \
    --model_name_or_path facebook/contriever-msmarco --passages psgs_w100.tsv \
    --passages_embeddings "wikipedia_embeddings/*" \
    --data {input_file_path}  \
    --output_dir {output_file_path} \
    --n_docs {num_docs}

Input file is either a json or jsonl and includes:

  • question or instruction (ex: 'Who is Lionel Messi')

Evaluations

We provide two main evaluation set ups: FActScore and our own fine grained error detection task.

FActScore

cd eval
python run_eval --model_name_or_path {model_name_or_path} --input_file {input_file_path} --output_file {output_file_path} --metric factscore --openai_key {your_openai_key}

Input file is json and includes:

  • passage (ex: 'The American soccer player, Lionel Messi, is...')
  • evidence (ex: 'Lionel Messi is an Argentine soccer player...')
  • title (ex: 'Lionel Messi')

FActScore dataset can be downloaded from here. We used the the Alpaca 7B, Alpaca 13B, and ChatGPT data from FActScore.

Fine Grained Sentence Detection

cd eval
python run_eval --model_name_or_path {model_name_or_path} --input_file {input_file_path} --output_file {output_file_path} --metric detection

Input file is json and includes:

  • passage (ex: 'The American soccer player, Lionel Messi, is...')
  • evidence (ex: 'Lionel Messi is an Argentine soccer player...')
  • annotated (ex: 'The <entity><mark>Argentine</mark><delete>American</delete></entity> soccer player, Lionel Messi, is...')

You can find our human annotation data here.

Optional flags:

  • --max_new_tokens: max new tokens to generate
  • --do_sample: true or false, whether or not to use sampling
  • --temperature: temperature for sampling
  • --top_p: top_p value for sampling

Citation

@article{mishra2024finegrained,
    title={ Fine-grained Hallucinations Detections },
    author={ Mishra, Abhika and Asai, Akari and Balachandran, Vidhisha and Wang, Yizhong and Neubig, Graham and Tsvetkov, Yulia and Hajishirzi, Hannaneh },
    journal={arXiv preprint},
    year={ 2024 },
    url={ https://arxiv.org/abs/2401.06855 }
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published