Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

Add the support of testing on multiple datasets after training on one dataset. #69

Merged
merged 5 commits into from
Dec 19, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
84 changes: 47 additions & 37 deletions src/autogluon/bench/frameworks/multimodal/exec.py
Original file line number Diff line number Diff line change
Expand Up @@ -194,6 +194,10 @@ def run(
"presets": params.pop("presets", None),
"path": os.path.join(benchmark_dir, "models"),
}

if val_data is not None:
predictor_args["eval_metric"] = val_data.metric

if train_data.problem_type == IMAGE_SIMILARITY:
predictor_args["query"] = train_data.image_columns[0]
predictor_args["response"] = train_data.image_columns[1]
Expand Down Expand Up @@ -223,45 +227,51 @@ def run(
end_time = time.time()
training_duration = round(end_time - start_time, 1)

evaluate_args = {
"data": test_data.data,
"label": label_column,
"metrics": test_data.metric if metrics_func is None else metrics_func,
}

if test_data.problem_type == IMAGE_TEXT_SIMILARITY:
evaluate_args["query_data"] = test_data.data[test_data.text_columns[0]].unique().tolist()
evaluate_args["response_data"] = test_data.data[test_data.image_columns[0]].unique().tolist()
evaluate_args["cutoffs"] = [1, 5, 10]
if isinstance(test_data.data, dict): # multiple test datasets
test_data_dict = test_data.data

start_time = time.time()
scores = predictor.evaluate(**evaluate_args)
end_time = time.time()
predict_duration = round(end_time - start_time, 1)

if "#" in framework:
framework, version = framework.split("#")
else:
framework, version = framework, ag_version

metric_name = test_data.metric if metrics_func is None else metrics_func.name
metrics = {
"id": "id/0", # dummy id to make it align with amlb benchmark output
"task": dataset_name,
"framework": framework,
"constraint": constraint,
"version": version,
"fold": 0,
"type": predictor.problem_type,
"result": scores[metric_name],
"metric": metric_name,
"utc": utc_time,
"training_duration": training_duration,
"predict_duration": predict_duration,
"scores": scores,
}
subdir = f"{framework}.{dataset_name}.{constraint}.local"
save_metrics(os.path.join(metrics_dir, subdir, "scores"), metrics)
test_data_dict = {dataset_name: test_data}

for dataset_name, test_data in test_data_dict.items():
evaluate_args = {
"data": test_data.data,
"label": label_column,
"metrics": test_data.metric if metrics_func is None else metrics_func,
}

if test_data.problem_type == IMAGE_TEXT_SIMILARITY:
evaluate_args["query_data"] = test_data.data[test_data.text_columns[0]].unique().tolist()
evaluate_args["response_data"] = test_data.data[test_data.image_columns[0]].unique().tolist()
evaluate_args["cutoffs"] = [1, 5, 10]

start_time = time.time()
scores = predictor.evaluate(**evaluate_args)
end_time = time.time()
predict_duration = round(end_time - start_time, 1)

if "#" in framework:
framework, version = framework.split("#")
else:
framework, version = framework, ag_version

metric_name = test_data.metric if metrics_func is None else metrics_func.name
metrics = {
"id": "id/0", # dummy id to make it align with amlb benchmark output
"task": dataset_name,
"framework": framework,
"constraint": constraint,
"version": version,
"fold": 0,
"type": predictor.problem_type,
"metric": metric_name,
"utc": utc_time,
"training_duration": training_duration,
"predict_duration": predict_duration,
"scores": scores,
}
subdir = f"{framework}.{dataset_name}.{constraint}.local"
save_metrics(os.path.join(metrics_dir, subdir, "scores"), metrics)


if __name__ == "__main__":
Expand Down