Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

[OPIK-656]: log experiments in the playground; #1072

Merged
merged 3 commits into from
Jan 20, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,213 @@
import asyncLib from "async";
import { v7 } from "uuid";
import pick from "lodash/pick";

import {
LogExperiment,
LogExperimentItem,
LogSpan,
LogTrace,
} from "@/types/playground";

import { SPAN_TYPE } from "@/types/traces";
import api, {
EXPERIMENTS_REST_ENDPOINT,
SPANS_REST_ENDPOINT,
TRACES_REST_ENDPOINT,
} from "@/api/api";
import { snakeCaseObj } from "@/lib/utils";
import { getModelProvider } from "@/lib/llm";
import { createBatchProcessor } from "@/lib/batches";
import { RunStreamingReturn } from "@/api/playground/useCompletionProxyStreaming";
import { LLMPromptConfigsType, PROVIDER_MODEL_TYPE } from "@/types/providers";
import { ProviderMessageType } from "@/types/llm";

export interface LogQueueParams extends RunStreamingReturn {
promptId: string;
datasetItemId?: string;
datasetName: string | null;
model: PROVIDER_MODEL_TYPE | "";
providerMessages: ProviderMessageType[];
configs: LLMPromptConfigsType;
}

export interface LogProcessorArgs {
onAddExperimentRegistry: (loggedExperiments: LogExperiment[]) => void;
onError: (error: Error) => void;
onCreateTraces: (traces: LogTrace[]) => void;
}

export interface LogProcessor {
log: (run: LogQueueParams) => void;
}

const createBatchTraces = async (traces: LogTrace[]) => {
return api.post(`${TRACES_REST_ENDPOINT}batch`, {
traces: traces.map(snakeCaseObj),
});
};

const createBatchSpans = async (spans: LogSpan[]) => {
return api.post(`${SPANS_REST_ENDPOINT}batch`, {
spans: spans.map(snakeCaseObj),
});
};

const createExperiment = async (experiment: LogExperiment) => {
return api.post(EXPERIMENTS_REST_ENDPOINT, snakeCaseObj(experiment));
};

const createBatchExperimentItems = async (
experimentItems: LogExperimentItem[],
) => {
await api.post(`${EXPERIMENTS_REST_ENDPOINT}items`, {
experiment_items: experimentItems.map(snakeCaseObj),
});
};

const PLAYGROUND_PROJECT_NAME = "playground";
const PLAYGROUND_TRACE_SPAN_NAME = "chat_completion_create";
const USAGE_FIELDS_TO_SEND = [
"completion_tokens",
"prompt_tokens",
"total_tokens",
];

const getTraceFromRun = (run: LogQueueParams): LogTrace => {
return {
id: v7(),
projectName: PLAYGROUND_PROJECT_NAME,
name: PLAYGROUND_TRACE_SPAN_NAME,
startTime: run.startTime,
endTime: run.endTime,
input: { messages: run.providerMessages },
output: { output: run.result || run.providerError },
};
};

const getSpanFromRun = (run: LogQueueParams, traceId: string): LogSpan => {
return {
id: v7(),
traceId,
projectName: PLAYGROUND_PROJECT_NAME,
type: SPAN_TYPE.llm,
name: PLAYGROUND_TRACE_SPAN_NAME,
startTime: run.startTime,
endTime: run.endTime,
input: { messages: run.providerMessages },
output: { choices: run.choices ? run.choices : [] },
usage: !run.usage ? undefined : pick(run.usage, USAGE_FIELDS_TO_SEND),
metadata: {
created_from: run.model ? getModelProvider(run.model) : "",
usage: run.usage,
model: run.model,
parameters: run.configs,
},
};
};

const getExperimentFromRun = (run: LogQueueParams): LogExperiment => {
return {
id: v7(),
datasetName: run.datasetName!,
metadata: {
model: run.model,
messages: JSON.stringify(run.providerMessages),
},
};
};

const getExperimentItemFromRun = (
run: LogQueueParams,
experimentId: string,
traceId: string,
): LogExperimentItem => {
return {
id: v7(),
datasetItemId: run.datasetItemId!,
experimentId,
traceId,
};
};

const CREATE_EXPERIMENT_CONCURRENCY_RATE = 5;

const createLogPlaygroundProcessor = ({
onAddExperimentRegistry,
onError,
onCreateTraces,
}: LogProcessorArgs): LogProcessor => {
const experimentPromptMap: Record<string, string> = {};
const experimentRegistry: LogExperiment[] = [];

const spanBatch = createBatchProcessor<LogSpan>(async (spans) => {
try {
await createBatchSpans(spans);
} catch {
onError(new Error("There has been an error with logging spans"));
}
});

const traceBatch = createBatchProcessor<LogTrace>(async (traces) => {
try {
await createBatchTraces(traces);
onCreateTraces(traces);
} catch {
onError(new Error("There has been an error with logging traces"));
}
});

const experimentItemsBatch = createBatchProcessor<LogExperimentItem>(
async (experimentItems) => {
try {
await createBatchExperimentItems(experimentItems);
} catch {
onError(
new Error("There has been an error with logging experiment items"),
);
}
},
);

const experimentsQueue = asyncLib.queue<LogExperiment>(async (e) => {
try {
await createExperiment(e);
experimentRegistry.push(e);
} catch {
onError(new Error("There has been an error with logging experiments"));
}
}, CREATE_EXPERIMENT_CONCURRENCY_RATE);

experimentsQueue.drain(() => {
onAddExperimentRegistry(experimentRegistry);
});

return {
log: (run: LogQueueParams) => {
const { promptId } = run;

const trace = getTraceFromRun(run);
const span = getSpanFromRun(run, trace.id);

// create a missing experiment
if (!experimentPromptMap[promptId]) {
const experiment = getExperimentFromRun(run);
experimentPromptMap[promptId] = experiment.id;
experimentsQueue.push(experiment);
}

const experimentId = experimentPromptMap[promptId];
const experimentItem = getExperimentItemFromRun(
run,
experimentId,
trace.id,
);

traceBatch.addItem(trace);
spanBatch.addItem(span);
experimentItemsBatch.addItem(experimentItem);
},
};
};

export default createLogPlaygroundProcessor;

This file was deleted.

67 changes: 0 additions & 67 deletions apps/opik-frontend/src/api/traces/useSpanCreateMutation.ts

This file was deleted.

Loading
Loading