This repository contains the source code of the multi-atlas baseline method used in the paper "Hybrid graph convolutional neural networks for landmark-based anatomical segmentation" (Gaggion et al., MICCAI 2021). For more information about this work, visit Nicolás Gaggion's repository on GitHub: https://github.com/ngaggion/HybridGNet
This projects uses Python 3.8.10.
- Download and preprocess the JSRT dataset. You can found the instructions here.
- Format landmarks files into txt files for SimpleElastix. Run
./00_preprocess_jsrt.sh
after installing the project environment (instructions below).
- Create and activate virtual environment: 1)
python3 -m venv env
2)source env/bin/activate
- Install required packages:
pip install -r requirements.txt
- Install project modules (src):
pip install -e .
- Install SimpleElastix toolbox following this guide.
- JSRT:
./01_test_jsrt.sh
- Montgomery:
./02_test_montgomery.sh
- Shenzhen:
./03_test_shenzhen.sh
- Gaggion, N., Mansilla, L., Milone, D. H., & Ferrante, E. (2021, September). Hybrid graph convolutional neural networks for landmark-based anatomical segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 600-610). Springer, Cham.